2nd TLOG seminar, 24 October 2008

Intermodal Mode Choice Modeling and Analysis of SEA&AIR

Shinya HANAOKA

Associate Professor Tokyo Institute of Technology, JAPAN hanaoka@ide.titech.ac.jp

Tomoya KAWASAKI

Doctoral Student Tokyo Institute of Technology, JAPAN kawasaki@tp.ide.titech.ac.jp

Background

Change in trade between Japan and Russia

- Increase in Import of Russia from Japan (Automobile: 71.4%)
- Raise of the value of Ruble (purchasing power of Russia)
- Other East European countries also increases import from Japan

Logistics situation have gradually been changed

- Excess in West-Bound (W/B)
- Lack of SEA space

Problems in sea port of St. Petersburg (Arrival port of SEA)

- Lack of sea port space
- Decrepit in sea port
- Vessel needs icebreaker during winter
- Depth is not deep enough for large-sized container ship
- Delay occurs (congestion, custom clearance, ...): 5-7days

Trans-Siberian Railway (TSR)

One of the alternative mode of SEA;

- Distance: Less than half of SEA (9,297km)
- Leadtime: Less than half of SEA (18days)
- Mass transit, Consistent haulage (150 TEU/train)
- Fare: Higher than SEA (US\$8,000/40'container)

Enough potential to be competitor of SEA , however, Japanese shippers tend not to use TSR. (Tsuji, 2008)

Objective

Coping with high demand on Japan-Russia trade (W/B)

1. Enhancing use of TSR

- Japanese shippers tend not to use TSR, however, Korean Shippers tend to use TSR (Share in 2006, Korea : China : Japan = 63 : 33 : 4)
- Tsuji (2008) reports that Japanese shippers have negative image towards TSR
- Developing mode choice model in Japan-Moscow in order to reveal important factors for Japanese shippers

2. <u>Analyzing SEA&AIR as alternative mode of SEA</u>

SEA&AIR: Intermodal mode between maritime (SEA) and air (AIR) transport Qualitative analysis for SEA&AIR whether it can be an alternative of SEA (In case future demand is expected, SEA&AIR is accepted as an alternative)

- Shorter leadtime than SEA
- Cheaper fare than AIR
- No summary article and report about SEA&AIR

Practice of SEA&AIR

(a) Late 1980s - Early 1990s: Prime time of SEA&AIR

Route	Origin	Relay Point	Destination	Leadtime (Day)	Fare (JPY/kg)	Note
1	Japan (Tokyo)	US (Seattle)	Europe (Luxemburg)	14	30-50% of AIR	Operated by Cargolux

SEA&AIR was an alternative mode of AIR due to high AIR fare

(b) <u>Late 1990s – present</u>

Although # of route is increased, quantity is significantly decreased

1	Japan	US (Minami)	South America	12-18	300	 AIR is expensive Lack of AIR space (Japan – South America) 			
2	East Asia (China)	Japan	US	5	n/a	Lack of AIR space (China - US)			
3	Japan	US (Seattle)	Europe	12-14	260	Operated since 1980s			
4	Japan	Singapore	Middle East	15-17	450	Low volume			
SEA&AIR is used as alternative of AIR									
	•High AIR fare, Lack of AIR space								

Leadtime and Fare of SEA&AIR

<u>Case1:</u> Japan → Seattle → Europe						
Mode	FOB (Japan)	SEA	Relay Point (Seattle)	Arrival (Europe)	Fare	
AIR	Ν	-	-	N+1-2	450	
SEA&AIR (via SEA)	N+3	8	1-3	N+17-18	260	
SEA	N+3	24	-	N+27 (fastest)	82	
<u>Case2:</u> Japan \rightarrow Singapore \rightarrow Middle East						
<u>Case2:</u> Japan → Sing	gapore \rightarrow M	liddle Eas	st		(Unit: Day)	
<u>Case2:</u> Japan → Sing Mode	gapore $\rightarrow M$ FOB (Japan)	liddle Eas SEA	st Relay Point (Singapore)	Destination (Middle East)	(Unit: Day) Fare	
	FOB		Relay Point			
Mode	FOB (Japan)		Relay Point	(Middle East)	Fare	

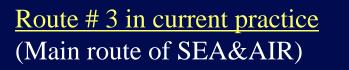
FOB: Free on Board

N: Custom clearance day is set as starting point

Change in SEA&AIR Cargo Volume

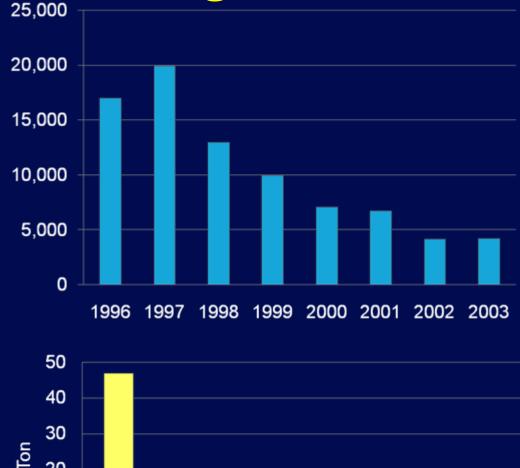
20

10


0

Quantity (Ton)

1995


47

Ton

Japan \rightarrow US (Seattle) \rightarrow Europe

Route # 4 in current practice

(Unstable demand) Japan → South East Asia (Singapore) → Europe

Made by author based on Ocean Commerce Ltd. (2006)

1996

0.4

1997

1.5

2000

0

1999

2.15

1998

0

Reasons of Declining SEA&AIR Demand

- 1. <u>Economies of Scale (EOS)</u>
 - Belly is fixed by pallet (110*110 cm in Asia)
 - Average lot size: 0.5 tons/belly
- 2. <u>Risk on Transshipment Process</u>
 - Risk of theft
 - Risk of getting damage
- 3. Size of Container
 - Cargo size of SEA and AIR is totally different
- 4. Growth of Supply Chain Management (SCM)
 - "On-time" performance is important
- 5. Low Fare of AIR
 - Until the late 1980s: High AIR fare
 - From the early 1990s: AIR fare is getting cheaper

SEA&AIR is not suitable for an alternative mode of SEA

Mode Choice between SEA and TSR

Objective:

Revealing important factor for Japanese shippers between Japan and

Survey Methodology and Data Collection

(a) <u>Survey Methodology:</u>

- 1. Stated Preference (SP) method
 - Hypothetical scenario according to the interview survey
 - Revealed Preference (RP) is almost impossible to conduct
- 2. Binary Logit (BL) Model
 - A model used for prediction of the probability of occurrence of an event between two events

(b) <u>Questionnaire Survey:</u>

- Target: Five potential TSR users (shippers) in Japan
- Mail-back survey
- Choice method
- Date: Between 4th and 15th April 2008
- Number of data collected: 80

Attributes and Level

- Extracted quite important attributes
- Attributes are assumed statistically independent one another

• • • • • • • • •	Level			
Attributes	SEA	SEA&RAIL (TSR)		
1. Leadtime Total travel time (port to port)	40days	15days, 25days		
2. Cost Total cost (fare, custom clearance, haulage of empty container,)	\$7,000	\$7,500, \$8,500		
3. Punctuality Related to delay	Punctual (1), Unpunctual (0)	Punctual (1), Unpunctual (0)		
4. Frequency Frequency of shipping	1time/day (1), 1time/week (0)	1time/day (1), 1time/week (0)		
5. Security Stolen/missing and damaging on the commodity	High (1), Low (0)	High (1), Low (0)		

Questionnaire Form

- Supposed that your company transport goods from Tokyo to Moscow by 40' container.
 Please assume that two transport modes such as (A) and (B) which modes are either TSR
- (Trans-Siberian Railway) or SEA (Maritime Transport) are available in the near future.
 In case of two transport modes such as (A) and (B) are available under the hypothetical situation like 1 to 16 in question (2), Please choose transport mode that you <u>may be going to use</u>.

(1) Please choose goods that your company will transport between Japan and Russia from following options. Note: Please answer on the premise that what you choose here will be transport in question (2).

1. Parts for automobile	2. Automobile (built)
Other parts (For what products?	
4. Other built products (What products?	

(2) Please choose transport mode that you may be going to use when you transport goods selected in question (1) between Japan and Moscow under the hypothetical situation indicated below.

80	LU I	

Mar	k op	tion↓	l Leadtime	2 Cost ^{*1}	3 Punctuality	4 Frequency	5 Security ^{*2}
	A		40days	\$7,000	Punctual	ltime/day	Low
(В)	20days	\$8,000	Unpunctual*3	ltime/week	High

Cost: Total cost per 40' container

²Securuty: Missing/Stolen the commodity, etc

³Unpunctual: Occurrence of delay

9. Choose one transport mode (A or B) that you may be going to use.

Mark option↓	l Leadtime	2 Cost	3 Punctuality	4 Frequency	5 Security
А	40days	\$7,000	Unpunctual	ltime/week	High
В	25days	\$7,500	Unpunctual	ltime/week	Low

10. Choose one transport mode (A or B) that you may be going to use.

Mark option↓	1	2	3	4	5
A	40days	\$7,000	Punctual	ltime/week	High
В	25days	\$7,500	Punctual	ltime/day	Low

11. Choose one transport mode (A or B) that you may be going to use.

Mark option↓	1	2	3	4	5
A	40days	\$7,000	Punctual	ltime/day	High
В	25days	\$8,500	Punctual	ltime/day	High

12. Choose one transport mode (A or B) that you may be going to use.

Mark option↓	1	2	3	4	5
A	40days	\$7,000	Punctual	ltime/day	Low
В	15days	\$8,500	Punctual	ltime/week	High

13. Choose one transport mode (A or B) that you may be going to use.

Mark option↓	1	2	3	4	5
A	40days	\$7,000	Punctual	ltime/week	Low
В	15days	\$7,500	Punctual	ltime/week	Low

14. Choose one transport mode (A or B) that you may be going to use.

Mark option↓	1	2	3	4	5
A	40days	\$7,000	Unpunctual	ltime/week	Low
В	15days	\$7,500	Punctual	ltime/day	High

Calibration Result

Calibrated by NLOGIT 4.0

Explanatory Variables	Estimated Coefficients	Standard Error	t-value		
Model Constants					
SEA	1.423382	1.120105	1.271		
TSR (base)	0	-	-		
Leadtime (day)	-0.048939	0.047842	-1.023		
Cost (US \$)	-0.7608e-04	0.000127	-0.599		
Punctuality	0.679197	0.352819	1.925		
Frequency	0.553472	0.353790	1.564		
Security	1.352651	0.354754	3.813		
Estimated Statistics	Values				
L(β)	-93.2585				
L(0)	-105.3584				
Likelihood Ratio Test	24.1998				
Rho-bar-squared	0.11485				

Sensitivity Analysis 60%

 Case 1
 55%

 Increase in SEA cost
 50%

 In case 50% increase in
 45%

 SEA cost, share is changed
 40%

Dercent Prediction

Case 2 Decrease in TSR cost In case 50% decrease in TSR cost, share is changed off

Summary and Conclusion

SEA&AIR:

- SEA&AIR is used as alternative of AIR
- Demand on SEA&AIR can not be expected in the future

Mode Choice Modeling:

- Since security is the most important attributes of TSR for Japanese shippers, security factors should be improved. According to the interview survey, shippers are very sensitive to damage on commodities.
- Setting the level of attributes may affect the results.